Partially-ordered Modalities
نویسندگان
چکیده
Modal logic is extended by partially ordering the modalities. The modalities are normal, i.e., commute with either conjunctions or disjunctions and preserve either Truth or Falsity (respectively). The partial order does not conflict with type of modality (K, S4, etc.) although this paper will concentrate on S4 since partially ordered S4 systems appear to be numerous. The partially-ordered normal modal systems considered are both sound and complete. Hilbert and Gentzen systems are given. A cut-elimination theorem holds (for partially ordered S4), and the Hilbert and Gentzen systems present the same logic. The partial order induces a 2-category structure on a coalgebraic formulation of descriptive frames. Channel theory is used to ‘move’ modal logics when the source and target languages may be different. A particular partially ordered modal system is shown to be applicable to security properties.
منابع مشابه
Generalized $F$-contractions in Partially Ordered Metric Spaces
We discuss about the generalized $F$-contraction mappings in partially ordered metric spaces. For this, we first introduce the notion of ordered weakly $F$-contraction mapping. We also present some fixed point results about this type of mapping in partially ordered metric spaces. Next, we introduce the notion of $acute{mathrm{C}}$iri$acute{mathrm{c}}$ type generalized ordered weakly $F$-contrac...
متن کاملGeneralized Weakly Contractions in Partially Ordered Fuzzy Metric Spaces
In this paper, a concept of generalized weakly contraction mappings in partially ordered fuzzy metric spaces is introduced and coincidence point theorems on partially ordered fuzzy metric spaces are proved. Also, as the corollary of these theorems, some common fixed point theorems on partially ordered fuzzy metric spaces are presented.
متن کاملBhaskar-Lakshmikantham type results for monotone mappings in partially ordered metric spaces
In this paper, coupled xed point results of Bhaskar-Lakshmikantham type [T. Gnana Bhaskar, V.Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, NonlinearAnalysis 65 (2006) 1379-1393] are extend, generalized, unify and improved by using monotonemappings instead mappings with mixed monotone property. Also, an example is given to supportthese improvements.
متن کاملFUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES
In this paper, we consider fuzzy fractional partial differential equations under Caputo generalized Hukuhara differentiability. Some new results on the existence and uniqueness of two types of fuzzy solutions are studied via weakly contractive mapping in the partially ordered metric space. Some application examples are presented to illustrate our main results.
متن کاملCommon fixed point theorems of contractive mappings sequence in partially ordered G-metric spaces
We consider the concept of Ω-distance on a complete partially ordered G-metric space and prove some common fixed point theorems.
متن کامل